Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of Cu(In,Ga)Se2 solar cells: Why performance decreases with increasing Ga content

Identifieur interne : 014258 ( Main/Repository ); précédent : 014257; suivant : 014259

Analysis of Cu(In,Ga)Se2 solar cells: Why performance decreases with increasing Ga content

Auteurs : RBID : Pascal:99-0324149

Descripteurs français

English descriptors

Abstract

Solar cells have been made from uniform Cu(In,Ga)Se2 films deposited by elemental evaporation with two different Ga compositions, Ga/[In+Ga]=0.30 and 0.65. The solar cells fabricated from these uniform films have 15% efficiency for Ga/[In+Ga]=0.30, but the device efficiency is less than expected for the high Ga content due primarily to a decrease in fill factor and open circuit voltage. Analysis of current-voltage results have shown that the main cause of this decrease is a voltage dependent light generated current, JL,(V). Devices were fabricated with both standard (1 μm) and semi-transparent (0.04 μm) Mo contacts. Bi-facial spectral response measurements were made and analyzed on the devices with the semi-transparent Mo contacts in order to determine the changes in collection efficiency as a function of changing Ga composition and applied voltage. This analysis determined that the decrease in the light generated current with increasing voltage is primarily due to a reduction in minority carrier diffusion length, L, from about 0.8 to 0.1 μm. © 1999 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:99-0324149

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Analysis of Cu(In,Ga)Se
<sub>2</sub>
solar cells: Why performance decreases with increasing Ga content</title>
<author>
<name sortKey="Phillips, J E" uniqKey="Phillips J">J. E. Phillips</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Institute of Energy Conversion, University of Delaware, Newark, Delaware 19716-3820</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>Institute of Energy Conversion, University of Delaware, Newark</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shafarman, W N" uniqKey="Shafarman W">W. N. Shafarman</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Institute of Energy Conversion, University of Delaware, Newark, Delaware 19716-3820</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>Institute of Energy Conversion, University of Delaware, Newark</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">99-0324149</idno>
<date when="1999-03-05">1999-03-05</date>
<idno type="stanalyst">PASCAL 99-0324149 AIP</idno>
<idno type="RBID">Pascal:99-0324149</idno>
<idno type="wicri:Area/Main/Corpus">014C42</idno>
<idno type="wicri:Area/Main/Repository">014258</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0094-243X</idno>
<title level="j" type="abbreviated">AIP conf. proc.</title>
<title level="j" type="main">AIP conference proceedings</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier mobility</term>
<term>Copper compounds</term>
<term>Copper selenides</term>
<term>Efficiency</term>
<term>Electric contacts</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>Gallium selenides</term>
<term>Indium compounds</term>
<term>Indium selenides</term>
<term>Molybdenum</term>
<term>Performance evaluation</term>
<term>Selenium compounds</term>
<term>Solar cells</term>
<term>Spectral response</term>
<term>Ultraviolet spectra</term>
<term>Visible spectra</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8460J</term>
<term>Etude expérimentale</term>
<term>Cellule solaire</term>
<term>Cuivre séléniure</term>
<term>Indium séléniure</term>
<term>Gallium séléniure</term>
<term>Molybdène</term>
<term>Contact électrique</term>
<term>Efficacité</term>
<term>Mobilité porteur charge</term>
<term>Réponse spectrale</term>
<term>Spectre visible</term>
<term>Spectre UV</term>
<term>Cuivre composé</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Sélénium composé</term>
<term>Evaluation performance</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Molybdène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Solar cells have been made from uniform Cu(In,Ga)Se
<sub>2</sub>
films deposited by elemental evaporation with two different Ga compositions, Ga/[In+Ga]=0.30 and 0.65. The solar cells fabricated from these uniform films have 15% efficiency for Ga/[In+Ga]=0.30, but the device efficiency is less than expected for the high Ga content due primarily to a decrease in fill factor and open circuit voltage. Analysis of current-voltage results have shown that the main cause of this decrease is a voltage dependent light generated current, J
<sub>L</sub>
,(V). Devices were fabricated with both standard (1 μm) and semi-transparent (0.04 μm) Mo contacts. Bi-facial spectral response measurements were made and analyzed on the devices with the semi-transparent Mo contacts in order to determine the changes in collection efficiency as a function of changing Ga composition and applied voltage. This analysis determined that the decrease in the light generated current with increasing voltage is primarily due to a reduction in minority carrier diffusion length, L, from about 0.8 to 0.1 μm. © 1999 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0094-243X</s0>
</fA01>
<fA02 i1="01">
<s0>APCPCS</s0>
</fA02>
<fA03 i2="1">
<s0>AIP conf. proc.</s0>
</fA03>
<fA05>
<s2>462</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Analysis of Cu(In,Ga)Se
<sub>2</sub>
solar cells: Why performance decreases with increasing Ga content</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PHILLIPS (J. E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHAFARMAN (W. N.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Energy Conversion, University of Delaware, Newark, Delaware 19716-3820</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>120-125</s1>
</fA20>
<fA21>
<s1>1999-03-05</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21757</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 1999 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>99-0324149</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>AIP conference proceedings</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Solar cells have been made from uniform Cu(In,Ga)Se
<sub>2</sub>
films deposited by elemental evaporation with two different Ga compositions, Ga/[In+Ga]=0.30 and 0.65. The solar cells fabricated from these uniform films have 15% efficiency for Ga/[In+Ga]=0.30, but the device efficiency is less than expected for the high Ga content due primarily to a decrease in fill factor and open circuit voltage. Analysis of current-voltage results have shown that the main cause of this decrease is a voltage dependent light generated current, J
<sub>L</sub>
,(V). Devices were fabricated with both standard (1 μm) and semi-transparent (0.04 μm) Mo contacts. Bi-facial spectral response measurements were made and analyzed on the devices with the semi-transparent Mo contacts in order to determine the changes in collection efficiency as a function of changing Ga composition and applied voltage. This analysis determined that the decrease in the light generated current with increasing voltage is primarily due to a reduction in minority carrier diffusion length, L, from about 0.8 to 0.1 μm. © 1999 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8460J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Cellule solaire</s0>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Solar cells</s0>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cuivre séléniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indium séléniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Gallium séléniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Contact électrique</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Electric contacts</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Efficacité</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Efficiency</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Carrier mobility</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Réponse spectrale</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Spectral response</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Spectre visible</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Visible spectra</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Spectre UV</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ultraviolet spectra</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Cuivre composé</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Copper compounds</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Sélénium composé</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Selenium compounds</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Evaluation performance</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Performance evaluation</s0>
</fC03>
<fN21>
<s1>200</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9927M000084</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 014258 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 014258 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:99-0324149
   |texte=   Analysis of Cu(In,Ga)Se2 solar cells: Why performance decreases with increasing Ga content
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024